
Network Working Group R. T. Braden
Request for Comments: 189 UCLA/CCN
Obsoletes: RFC 88 (NIC 5668) 15 July 1971
NIC 7133
Category: D

 INTERIM NETRJS SPECIFICATIONS

 The following document describes the operation and protocol of the
 remote job entry service to CCN’s 360 Model 91. The interim protocol
 described here will be implemented as a production service before the
 end of July. Two host sites (Rand and UCLA/NMC) have written user
 processes for the interim NETRJS, based on the attached document.
 Questions on it should be addressed to CCN’s Technical Liaison.

 It is anticipated that the interim protocol will be superseded in a
 few months by a revised NETRJS, but the changes will be minor. The
 revision will bring the data transfer protocol of NETRJS into
 complete conformity with the proposed Data Transfer Protocol DTP (see
 RFC #171). The present differences between the DTP and NETRJS
 protocols are:

 (a) The format (but not the contents) of the 72 bit transaction
 header of NETRJS must be changed to conform with DTP.

 (b) The End-of-Data marker must be changed from X’FE’ to X’B40F’.

 (c) The initial "modes available" transaction of DTP must be
 added.

 (d) Some of the DTP error codes will be implemented.

 No other protocol changes are presently planned, although some may be
 suggested by operating experience with the interim protocol. When
 the revised protocol has been fully specified, it will be implemented
 with different ICP sockets than the interim protocol. This will
 allow a site which wants to start using CCN immediately to convert
 his protocol at leisure.

 Some possible future extensions to NETRJS which have been suggested
 are:

 (1) A 7-bit ASCII option of data transfer connections, for the
 convenience of PDP-10s.

Braden [Page 1]

RFC 189 Interim NETRJS Specifications July 1971

 (2) A "transparency" mode for input from ASCII remote sites, to
 allow the transmission of "binary decks" (object decks) in
 the job stream from these sites.

 (3) More than one simultaneous virtual card read, printer, and
 punch stream to the same virtual terminal.

 Comments on the utility of these proposals or others for your site
 would be appreciated.

 Robert T. Braden
 Technical Liaison
 UCLA/CCN
 (213) 825-7518

Braden [Page 2]

RFC 189 Interim NETRJS Specifications July 1971

 REMOTE JOB ENTRY TO UCLA/CCN
 FROM THE ARPA NETWORK

 (Interim Protocol)

A. Introduction

 NETRJS is the protocol for the remote job entry service to the 360
 Model 91 at the UCLA Campus Computing Network (CCN). NETRJS allows
 the user at a remote host to access CCN’s RJS ("Remote Job Service")
 sub-system, which provides remote job entry service to real remote
 batch (card reader/line printer) terminals over direct communications
 lines as well as to the ARPA Network.

 To use NETRJS, a user at a remote host needs a NETRJS user process to
 communicate with one of the NETRJS server processes at CCN. Each
 active NETRJS user process appears to RJS as a separate (virtual)
 remote batch terminal; we will refer to it as a VRBT.

 A VRBT may have virtual card readers, printers, and punches. Through
 a virtual card reader a Network user can transmit a stream of card
 images comprising one or more OS/360 jobs, complete with Job Control
 Language, to CCN. These jobs will be spooled into CCN’s batch system
 (OS/360 MVT) and run according to their priority. RJS will automati-
 cally return the print and/or punch output images which are created
 by these jobs to the virtual printer and/or card punch at the VRBT
 from which the job came (or to a different destination specified in
 the JCL). The remote user can wait for his output, or he can sign
 off and sign back on later to receive it.

 The VRBT is assumed to be under the control of the user’s teletype or
 other remote console; this serves the function of an RJS remote
 operator console. To initiate a NETRJS session, the remote user must
 execute the standard ICP (see RFC #165) to a fixed socket at CCN.
 The result is to establish a duplex Telnet connection to his console,
 allowing the user to sign into RJS. Once he is signed in, he can use
 his console to issue commands to RJS and to receive status, confirma-
 tion, and error messages from RJS. The most important RJS commands
 are summarized in Appendix D.

 Different VRBT’s are distinguished by 8-character terminal id’s.
 There may be more than one VRBT using RJS simultaneously from the
 same remote host. Terminal id’s for new VRBT’s will be assigned by
 CCN to individual users or user groups who wish to run batch jobs at
 CCN (contact the CCN Technical Liaison for details).

Braden [Page 3]

RFC 189 Interim NETRJS Specifications July 1971

B. Connections and Protocols

 Figure 1 shows conceptually the processes and protocols required to
 use NETRJS. The operator console uses a duplex connection under the
 Telnet third-level protocol (see RFC #158). The actual data transfer
 streams for job input and output are handled over separate simplex
 connections using a data transfer protocol.

 We will use the term channel for one of these NETRJS connections, and
 designate it input or output with reference to CCN. Each data
 transfer channel is identified with a particular virtual remote dev-
 ice -- card reader, printer, or punch. The data transfer channels
 need be open only while they are in use, and different channels may
 be used sequentially or simultaneously. NETRJS will presently sup-
 port simultaneous operation of a virtual card reader, a virtual
 printer, and a virtual punch (in addition to the operator console) on
 the same VRBT process. RJS itself will support more than one reader,
 printer, and punch at each remote terminal, so the NETRJS protocol
 could easily be expanded in the future to allow more simultaneous I/O
 streams to each Network user.

 The remote user needs a local escape convention so he can send com-
 mands directly to his VRBT process. These local VRBT commands would
 allow selection of the files at his host which contain job streams to
 be sent to the server, and files to receive job output from the
 server. They would also allow the user to open data transfer chan-
 nels to the NETRJS server process, and to close these connections to
 free buffer space or abort a transmission.

 When a VRBT starts a session, it has a choice of two ICP sockets,
 depending upon whether it is an ASCII or an EBCDIC virtual terminal.
 An EBCDIC virtual terminal transmits and receives its data as tran-
 sparent streams of 8 bit bytes (since CCN is an EBCDIC installation).
 It is expected that a user at an ASCII installation, however, will
 want his VRBT declared ASCII; RJS will then translate the input
 stream from ASCII to EBCDIC and translate the printer stream back to
 ASCII. This will allow the user to employ his local text editor for
 preparing input to CCN and for examining output. The punch stream
 will always be transparent, for outputting "binary decks".

 It should be noted that the choice of code for the operator console
 connections is independent of declared terminal type; in particular,
 they always use ASCII under Telnet protocol, even from an EBCDIC
 VRBT.

Braden [Page 4]

RFC 189 Interim NETRJS Specifications July 1971

 NETRJS protocol provides data compression, replacing repeated blanks
 or other characters by repeat counts. However, when the terminal id
 is assigned by CCN, a particular network terminal may be specified as
 using no data compression. In this case, NETRJS will simply truncate
 trailing blanks and send records in a simple "op code-length-data"
 form, called truncated format.

C. Starting and Terminating a Session

 The remote user establishes a connection to RJS via the standard ICP
 from his socket U to socket 11 [sub] 10 (EBCDIC) or socket 13 [sub]
 10 (ASCII) at host 1, IMP 1. If successful, the ICP results in a
 pair of connections which are in fact the NETRJS operator control
 connections.

 Once the user is connected, he must enter a valid RJS signon command
 ("SIGNON terminal-id") through his console. RJS will normally ack-
 nowledge signon with a console message; however, if RJS does not
 recognize the terminal-id or has no available Line Handler for the
 Network, it will indicate refusal by closing both operator connec-
 tions. If the user attempts to open data transfer connections before
 his signon command is accepted, the data transfer connections will be
 refused by CCN with an error message to his console.

 Suppose the operator input connection is socket S at CCN; S is the
 even number sent in the ICP. Then the other NETRJS channels have
 sockets at CCN with fixed relation to S, as shown in the table below.
 Until there is a suitable Network-wide solution to the problem of
 identity control on sockets, NETRJS will also require that the VRBT
 process use fixed socket offsets from his initial connection socket
 U. These are shown in the following table:

 Channel CCN Socket Remote Socket
 (Server) (User)

 Telnet / Remote Operator Console Input S U + 3 \
 \ Remote Operator Console Output S + 1 U + 2 / Telnet
 Data / Card Reader #1 S + 2 U + 5
 Transfer < Printer #1 S + 3 U + 4
 \ Punch #1 S + 5 U + 6

 Once the user is signed on, he can open data transfer channels and
 initiate input and output operations as explained in the following
 sections. To terminate the session, the remote user may close all
 connections. Alternatively, the user may enter a SIGNOFF command
 through his console; in this case, RJS will wait until the current
 job output streams are complete and then itself terminate the session
 by closing all connections.

Braden [Page 5]

RFC 189 Interim NETRJS Specifications July 1971

D. Input Operations

 A job stream for submission to RJS at CCN is a series of logical
 records, each of which is a card image. A card image may be at most
 80 characters long, to match the requirements of OS/360 for job
 input. The user can submit a "stack" of successive jobs through the
 card reader channel with no end-of-job indication between jobs; RJS
 recognizes the beginning of each new job by the appearance of a JOB
 card.

 To submit a job or stack of jobs for execution at CCN, the remote
 user must first open the card reader channel. He signals his VRBT
 process to issue Init (local = U + 5, foreign = S + 2, size = 8).
 NETRJS, which is listening on socket S + 2, will normally return an
 RTS command, opening the channel. If, however, it should happen that
 all input buffer space within the CCN NCP is in use, the request will
 be refused, and the user should try again later. If the problem per-
 sists, call the Technical Liaison at CCN.

 When the connection is open, the user can begin sending his job
 stream using the protocol defined in Appendix A. For each job suc-
 cessfully spooled, the user will receive a confirming message on his
 console. At the end of the stack, he must send an End-of-Data tran-
 saction to initiate processing of the last job. NETRJS will then
 close the channel (to avoid holding buffer space unnecessarily). At
 any time during the session, the user can re-open the card reader
 channel and transmit another job stack. He can also terminate the
 session and sign on later to get his output.

 The user can abort the card reader channel at any time by closing the
 channel (his socket S + 2). NETRJS will then discard the last par-
 tially spooled job. If NETRJS finds an error (e.g., transaction
 sequence number error or a dropped bit), it will abort the channel by
 closing the connection prematurely, and also inform the user via his
 console that his job was discarded (thus solving the race condition
 between End-of-Data and aborting). The user needs to retransmit only
 the last job. However, he could retransmit the entire stack
 (although it would be somewhat wasteful) since the CCN operating sys-
 tem enforces job name uniqueness by immediately "flushing" jobs with
 names already in the system.

 If the user’s process, NCP, or host, or the Network itself fails dur-
 ing input, RJS will discard the job being transmitted. A message
 informing the user that this job was discarded will be generated and
 sent to him the next time he signs on. On the other hand, those jobs
 whose receipt have been acknowledged on the operator’s console will
 not be affected by the failure, but will be executed by CCN.

Braden [Page 6]

RFC 189 Interim NETRJS Specifications July 1971

E. Output Operations

 The user may wait to set up a virtual printer (or punch) and open its
 channel until a STATUS message on his console indicates output is
 ready; or he may leave the output channel(s) open during the entire
 session, ready to receive output whenever it becomes available. He
 can also control which one of several available jobs is to be
 returned by entering appropriate operator commands.

 To be prepared to receive printer (or punch) output from his jobs,
 the user site issues Init (local = U + 4 (U + 6), foreign = S + 3 (S
 + 5), size = 8), respectively. NETRJS is listening on these sockets
 and should immediately return an STR. However, it is possible that
 because of software problems at CCN, RJS will refuse the connection
 and a CLS will be returned; in this case, try again or call the
 Technical Liaison.

 When RJS has output to send to a particular (virtual) terminal and a
 corresponding open output channel, it will send the output as a
 series of logical records using the protocol in Appendix A. The
 first record will consist of the job name (8 characters) followed by
 a comma and then the ID string from the JOB card (if any). In the
 printer stream, the first column of each record will be an ASA car-
 riage control character (see Appendix C); the punch output stream
 will never contain carriage control characters.

 NETRJS will send an End-of-Data transaction and then close an output
 channel at the end of the output for each complete batch job; the
 remote site must then send a new RFC (and ALL) to start output for
 another job. This gives the remote site a chance to allocate a new
 file for each job without breaking the output within a job. If the
 user at the remote site wants to cancel (or backspace or defer) the
 output of a particular job, he enters appropriate RJS commands on the
 operator input channel (see Appendix D).

 A virtual printer in NETRJS has 254 columns, exclusive of carriage
 control; RJS will send up to 255 characters of a logical record it
 finds in a SYSOUT data set. If the user wishes to reject or fold
 records longer than some smaller record size, he can do so in his
 VRBT process.

 If RJS encounters a permanent I/O error in reading the disk data set,
 it will notify the user via his console, skip forward to the next set
 of system messages or SYSOUT data set in the same job, and continue.
 In the future, RJS may be changed to send a Lost Data marker within
 the data stream as well as a console message to the user. In any
 case, the user will receive notification of termination of output
 data transfer for each job via messages on his console.

Braden [Page 7]

RFC 189 Interim NETRJS Specifications July 1971

 If the user detects an error in the stream, he can issue a Backspace
 (BSP) command from his console to repeat the last "page" of output,
 or a Restart (RST) command to repeat from last SYSOUT data set or the
 beginning of the job, or he can abort the channel by closing his
 socket. If he aborts the channel, RJS will simulate a Backspace com-
 mand, and when the user re-opens the channel the job will begin
 transmission again from an earlier point in the same data set. This
 is true even if the user terminates the current session first, and
 re-opens the channel in a later session; RJS saves the state of its
 output streams. However, before re-opening the channel he can defer
 this job for later output, restart it at the beginning, or cancel its
 output (see Appendix D). Note that aborting the channel is only
 effective if RJS has not yet sent the End-of-Data transaction.

 If the user’s process, NCP, or host, or the Network itself fails dur-
 ing an output operation, RJS will act as if the channel had been
 aborted and the user signed off. In no case should a user lose out-
 put from NETRJS.

Braden [Page 8]

RFC 189 Interim NETRJS Specifications July 1971

 Appendix A

 Data Transfer Protocol in NETRJS

1. Introduction

 The records in the data transfer channels (for virtual card reader,
 printer, and punch) are generally grouped into _transactions_ pre-
 ceded by headers. The transaction header includes a sequence number
 and the length of the transaction. Network byte size must be 8 bits
 in these data streams.

 A transaction is the unit of buffering within the Model 91 software.
 Internal buffers are 880 bytes. Therefore, CCN cannot transmit or
 receive a single transaction larger than 880 bytes. Transactions can
 be as short as one record; however, those sites which are concerned
 with efficiency should send transactions as close as possible to the
 880 byte limit.

 There is no necessary connection between physical message boundaries
 and transactions ("logical messages"); the NCP can break the "logical
 message" arbitrarily into physical messages. At CCN we will choose
 to have each logical message start a new physical message, so the NCP
 can send the last part of each message without waiting for an expli-
 cit request, but a remote site is not required to follow this conven-
 tion.

 Each logical record within a transaction begins with an "op code"
 byte which contains the channel identification, so its value is
 unique to each channel but constant within a channel. This choice
 provides a convenient way to verify bit synchronization at the
 receiver, and also allows an extension in the future to true "multi-
 leaving" (i.e., multiplexing all channels within one connection in
 each direction).

 The only provisions for transmission error detection in the current
 NETRJS protocol are (1) this "op code" byte to verify bit synchroni-
 zation and (2) the transaction sequence number. At the urging of
 Crowther, we favor putting an optional 16 bit check sum in the unused
 bytes of the second-level header. It is currently assumed that if an
 error is detected then the channel is to be aborted and the entire
 transmission repeated. To provide automatic retransmission we would
 have to put in reverse channels for ACK/NAK messages.

Braden [Page 9]

RFC 189 Interim NETRJS Specifications July 1971

2. Character Sets

 For an ASCII VRBT, NETRJS will map ASCII in the card reader stream
 into EBCDIC, and re-map the printer stream to ASCII, by the following
 rules:

 1. One-to-one mapping between the three ASCII characters | ˜ \
 which are not in EBCDIC, and the three EBCDIC characters
 [vertical bar, not-sign and cent-sign] (respectively) which
 are not in ASCII.

 2. The other six ASCII graphics not in EBCDIC will be
 translated on input to an EBCDIC question mark (?).

 3. The ASCII control DC3 (the only one not in EBCDIC) will be
 mapped into and from the EBCDIC control TM.

 4. The EBCDIC characters not in ASCII will be mapped in the
 printer stream into the ASCII question mark.

3. Meta-Notation

 The following description of the NETRJS data transfer protocol uses a
 formal notation derived from that proposed in RFC #31 by Bobrow and
 Sutherland. (The NETRJS format is also shown diagramatically in
 Figure 2.)

 The derived notation is both concise and easily readable, and we
 recommend its use for Network documentation. The notation consists
 of a series of productions for bit string variables whose names are
 capitalized. Each variable name which represents a fixed length
 field is followed by the length in bits (e.g., SEQNUMB(16)). Numbers
 enclosed in quotes are decimal, unless qualified by a leading X
 meaning hex. Since each hex digit is 4 bits, the length is not shown
 explicitly in hex numbers. For example, ’1’(8) and X’FF’ both
 represent a string of 8 one bits. The meta-syntactic operators are:

 | :alternative string
 [] :optional string
 () :grouping
 + :catenation of bit strings

 The numerical value of a bit string (interpreted as an integer) is
 symbolized by a lower case identifier preceding the string expression
 and separated by a colon. For example, in "i:FIELD(8)", i symbolizes
 the numeric value of the 8 bit string FIELD.

Braden [Page 10]

RFC 189 Interim NETRJS Specifications July 1971

 Finally, we use Bobrow and Sutherland’s symbolism for iteration of a
 sub-string: (STRING-EXPRESSION = n); denotes n occurrences of STRING
 EXPRESSION, implicitly catenated together. Here any n >= 0 is
 assumed unless n is explicitly restricted.

4. Protocol Definition

 STREAM <-- (TRANSACTION = n) + [END-OF-DATA]

 That is, STREAM, the entire sequence of data on a particular open
 channel, is a sequence of n TRANSACTIONS followed by an END-OF-DATA
 marker (omitted if the sender aborts the channel).

 TRANSACTION <-- THEAD(72) + (RECORD = r) + (’0’(1) = f)

 That is, a transaction consists of a 72 bit header, r records, and f
 filler bits.

 THEAD <-- X’FF’ + f:FILLER(8) + SEQNUMB(16) + LENGTH(32) + X’00’

 Transactions are to be consecutively numbered in the SEQNUMB field,
 starting with 0 in the first transaction after the channel is (re-)
 opened. The 32 bit LENGTH field gives the total length in bits of
 the r RECORD’s which follow. For convenience, the using site may add
 f additional filler bits at the end of the transaction to reach a
 convenient word boundary on his machine; the value f is also
 transmitted in the FILLER field of THEAD.

 RECORD <-- COMPRESSED | TRUNCATED

 RJS will accept intermixed RECORD’s which are COMPRESSED or TRUNCATED
 in an input stream. RJS will send one or the other format in the
 printer and punch streams to a given VRBT; the choice is determined
 when CCN establishes a terminal id.

 COMPRESSED <-- ’2’(2) + DEVID(6) + (STRING = p) + ’0’(8)

 STRING <-- (’6’(3) + i:DUPCOUNT(5))
 This form represents a string of i
 consecutive blanks

 (’7’(3) + i:DUPCOUNT(5) + TEXTBYTE(8))
 This form represents string of i consecutive
 duplicated of TEXTBYTE.

Braden [Page 11]

RFC 189 Interim NETRJS Specifications July 1971

 (’2’(2) + j:LENGTH(6) + (TEXTBYTE(8) = j))
 This form represents a string of j
 characters.

 The first two alternatives above in the STRING production begin with
 count bytes chosen to be distinguishable from the (currently defined)
 Telnet control characters. In a Telnet stream, the third count byte
 would not be needed. This is irrelevant to the current NETRJS, but
 it would allow the use of compression within a Telnet data stream.

 TRUNCATED <-- ’3’(2) + DEVID(6) + n:COUNT(8) + (TEXTBYTE(8) = n)

 DEVID(6) <-- DEVNO(3) + t:DEVTYPE(3)

 DEVID identifies a particular virtual device, i.e.,
 it identifies a channel. DEVTYPE specifies the type
 of device, as follows:

 t = 1: Output to remote operator console
 2: Input from remote operator console
 3: Input from card reader
 4: Output to printer
 5: Output to card punch
 6,7: Unused

 DEVNO(3) identifies the particular device of type t
 at this remote site; at present only DEVNO = 0 is
 possible.

 END-OF-DATA <-- X’FE’
 Signals end of job (output) or job stack (input).

Braden [Page 12]

RFC 189 Interim NETRJS Specifications July 1971

 APPENDIX B

 Telnet for VRBT Operator Console

 The remote operator console connections use the ASCII Telnet
 protocol as in RFC #158. Specifically:

 1) The following one-to-one character mappings are used for the
 three EBCDIC graphics not in ASCII:

 ASCII
 in Telnet NETRJS

 | [vertical bar]
 ˜ [not-sign]
 \ [cent-sign]

 2) Initially all Telnet control characters will be ignored. In the
 future we will implement the Telnet Break facility to allow a
 remote user to terminate extensive console output from a
 command.

 3) An operator console input line which exceeds 133 characters
 (exclusive of CR LF) will be truncated by NETRJS.

 4) NETRJS will accept BS to delete a character, and CAN to delete
 the current line. The sequence CR LF terminates each input and
 output line. HT will be translated to a single space in RJS.
 All other ASCII control characters will be ignored. NETRJS will
 translate the six ASCII graphics with no equivalent in EBCDIC
 into the character question mark ("?") on input.

Braden [Page 13]

RFC 189 Interim NETRJS Specifications July 1971

 APPENDIX C

 Carriage Control

 The carriage control characters sent in a printer channel by NETRJS
 conform to IBM’s extended USASI code, defined by the following table:

 CODE ACTION BEFORE WRITING RECORD

 blank Space one line before printing
 0 Space two lines before printing
 - Space three lines before printing
 + Suppress space before printing
 1 Skip to channel 1
 2 Skip to channel 2
 3 Skip to channel 3
 4 Skip to channel 4
 5 Skip to channel 5
 6 Skip to channel 6
 7 Skip to channel 7
 8 Skip to channel 8
 9 Skip to channel 9
 A Skip to channel 10
 B Skip to channel 11
 C Skip to channel 12

Braden [Page 14]

RFC 189 Interim NETRJS Specifications July 1971

 APPENDIX D

 Network/RJS Command Summary

Terminal Control and Information Command

 SIGNON First command of a session; identifies VRBT by giving
 its terminal id.

 SIGNOFF Last command of a session; RJS waits for any data
 transfer in progress to complete and then closes all
 connections.

 STATUS Outputs on the remote operator console a complete
 list, or a summary, of all jobs in the system for
 this VRBT, with an indication of their processing
 status in the Model 91.

 ALERT Outputs on the operator console the special "Alert"
 message, if any, from CCN computer operator. The
 Alert message is also automatically sent when the
 user does a SIGNON, or whenever the message changes.

 MSG Sends a message to CCN computer operator or to any
 other RJS terminal (real or virtual). A message from
 the computer operator or another RJS terminal will
 automatically appear on the remote operator console.

Job Control and Routing Commands

 Under CCN’s job management system, the default destination for output
 is the input source. Thus, a job submitted under a given VRBT will
 be returned to that VRBT (i.e., the same terminal id), unless the
 user’s JCL overrides the default destination.

 RJS places print and punch output described for a particular remote
 terminal into either an Active Queue or a Deferred Queue. When the
 user opens his print or punch output channel, RJS immediately starts
 sending job output from the Active Queue, and continues this queue is
 empty. Job output in the Deferred Queue, on the other hand, must be
 called for by job name, (via a RESET command from the remote opera-
 tor) before RJS will send it. The Active/Deferred choice for output
 from a job is determined by the deferral status of the VRBT when the
 job is entered; the deferral status, which is set to the Active
 option when the user signs on, may be changed by the SET command.

Braden [Page 15]

RFC 189 Interim NETRJS Specifications July 1971

 SET Allows the remote user to change certain properties
 of his VRBT for the duration of the current session;

 (a) May change the default output destination to be
 another (real or virtual) RJS terminal or the central
 facility.

 (b) May change the deferral status of the VRBT.

 DEFER Moves the print and punch output for a specified job
 or set of jobs from the Active Queue to the Deferred
 queue. If the job’s output is in the process of
 being transmitted over a channel, RJS aborts the
 channel and saves the current output location before
 moving the job to the Deferred Queue. A subsequent
 RESET command will return it to the Active Queue with
 an implied Backspace (BSP).

 RESET Moves specified job(s) from Deferred to Active Queue
 so they may be sent to user. A specific list of job
 names or all jobs can be moved with one RESET
 command.

 ROUTE Re-routes output of specified jobs (or all jobs)
 waiting in the Active and Deferred Queues for this
 VRBT. The new destination may be any other RJS
 terminal or the central facility.

 ABORT Cancels a job which was successfully submitted and
 awaiting execution or is current executing in the
 Model 91. If he cancelled job was in execution, all
 output it produced ill be returned.

Output Stream Control Commands

 BSP (BACKSPACE) "Backspaces" output stream within current sysout data
 set. Actual amount backspaced depends upon sysout
 blocking but is typically equivalent to a page on the
 line printer.

 CAN (CANCEL) (a) On an output channel, CAN causes the rest of the
 output in the sysout data set currently being
 transmitted to be omitted. Alternatively, may
 omit the rest of the sysout data sets for the job
 currently being transmitted; however, the remain-
 ing system and accounting messages will be sent.

Braden [Page 16]

RFC 189 Interim NETRJS Specifications July 1971

 (b) On an input channel, CAN causes RJS to ignore the
 job currently being read. However, the channel
 is not aborted as a result, and RJS will continue
 reading in jobs on the channel.

 (c) CAN can delete all sysout data sets for specified
 job(s) waiting in Active or Deferred Queue.

 RST (RESTART) (a) Restarts a specified output stream at the begin-
 ning of the current sysout data set or, option-
 ally, at the beginning of the job.

 (b) Marks as restarted specified job(s) whose
 transmission was earlier interrupted by system
 failure or user action (e.g., DEFER command or
 aborting the channel). When RJS transmits these
 jobs again it will start at the beginning of the
 partially transmitted sysout data set or, option-
 ally, at the beginning of the job. This function
 may be applied to jobs in either the Active or
 the Deferred Queue; however, if the job was in
 the Deferred Queue then RST also moves it to the
 Active Queue. If the job was never transmitted,
 RST has no effect other than this queue movement.

 REPEAT Sends additional copies of the output of specified
 jobs.

 EAM Echoes the card reader stream back in the printer or
 punch stream, or both.

Braden [Page 17]

RFC 189 Interim NETRJS Specifications July 1971

 +---------------------------------+
 | RJS |
 +---------------------------------+
 ^ | ^ | |
 | v | v v
 +------------------------------+
 CCN -- Server | |
 | NETRJS |
 +------------------------------+
 ^ | ^ | |
 | v | v v
 +----------+ +---------------+
 | TELNET | | Data Xfer | (server)
 | Server | | 3rd Level |
 +----------+ +---------------+
 ^ | ^ | |
---------------------|-----|----------|-----|-----|-----------------
 O | O | | | |
 p | p | C| C| C|
 e I | e O| I h| O h| P h|
 ARPA r n | r u| n a| u a| u a|
 a p | a t| p n| t n| n n|
 Network t u | t p| u n| p n| c n|
 o t | o u| t e| u e| h e|
 r | r t| l| t l| l|
---------------------|-----|----------|-----|-----|-----------------
 | | | | |
 | V | V V
 +----------+ +---------------+
 | TELNET | | Data Xfer | (user)
 | Server | | 3rd Level |
 +----------+ +---------------+
 Remote ^ ^ | |
 / "Virtual | | |
 User / Remote Batch | V V
 / Terminal" +------------------+
 / | |
 V | NETRJS |
 +---------+ | User |
 / |<------------->| Process |
 / Console | | |
 +____________| +------------------+
 ^ | |
 | V V
 (file) (file) (file)

 FIGURE 1. SCHEMATIC OF NETRJS OPERATION

Braden [Page 18]

RFC 189 Interim NETRJS Specifications July 1971

 +------+ +------+ +-----------+ +---------------------+
TRANSACTION <--> | X’FF’| |Filler| |Sequence | | Data Length |
 | | | Count| | Number | | in bits |
 +------+ +------+ +-----------+ +---------------------+
 +------+
 | X’00’| { RECORD } *
 | |
 +------+

 <---- n text bytes ------>
 +--+-----+ +--------+ +--------+ +--------+
TRUNCATED <--> |11|Devid| | n (8) | | Text | . . . | Text |
RECORD | | (6) | | | | (8) | | (8) |
 +--+-----+ +--------+ +--------+ +--------+

 / \
 | +---+----+ | *
 | |110| n | (n blanks) |
 | | |(5) | |
 | +---+----+ |
 | |
 +--+-----+ / +---+----+ +--------+ |
COMPRESSED<--> |10|Devid|< |111| n | |Char- | (n replications |
RECORD | | (6) | \ | |(5) | | acter | of "Character") |
 +--+-----+ | +---+----+ +--------+ |
 | |
 | +--+-----+ +--------+ +--------+ |
 | |10| n | | Text | . . .| Text | |
 | | | (6) | | (8) | | (8) | |
 | +--+-----+ +--------+ +--------+ |
 \ /
 +------+
 | X’00’|
 | |
 +------+

 FIGURE 2. DATA TRANSFER PROTOCOL IN NETRJS

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Tony Hansen 11/98]

Braden [Page 19]

